Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes

نویسندگان

  • Stephanie A. Hoffmann
  • Deniz Hos
  • Melanie Küspert
  • Richard A. Lang
  • Robin Lovell-Badge
  • Michael Wegner
  • Simone Reiprich
چکیده

Neural precursor cells of the ventricular zone give rise to all neurons and glia of the central nervous system and rely for maintenance of their precursor characteristics on the closely related SoxB1 transcription factors Sox1, Sox2 and Sox3. We show in mouse spinal cord that, whereas SoxB1 proteins are usually downregulated upon neuronal specification, they continue to be expressed in glial precursors. In the oligodendrocyte lineage, Sox2 and Sox3 remain present into the early phases of terminal differentiation. Surprisingly, their deletion does not alter precursor characteristics but interferes with proper differentiation. Although a direct influence on myelin gene expression may be part of their function, we provide evidence for another mode of action. SoxB1 proteins promote oligodendrocyte differentiation in part by negatively controlling miR145 and thereby preventing this microRNA from inhibiting several pro-differentiation factors. This study presents one of the few cases in which SoxB1 proteins, including the stem cell factor Sox2, are associated with differentiation rather than precursor functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct SoxB1 networks are required for naïve and primed pluripotency

Deletion of Sox2 from mouse embryonic stem cells (ESCs) causes trophectodermal differentiation. While this can be prevented by enforced expression of the related SOXB1 proteins, SOX1 or SOX3, the roles of SOXB1 proteins in epiblast stem cell (EpiSC) pluripotency are unknown. Here, we show that Sox2 can be deleted from EpiSCs with impunity. This is due to a shift in the balance of SoxB1 expressi...

متن کامل

Epigenetic regulation of human SOX3 gene expression during early phases of neural differentiation of NT2/D1 cells

Sox3/SOX3 is one of the earliest neural markers in vertebrates. Together with the Sox1/SOX1 and Sox2/SOX2 genes it is implicated in the regulation of stem cell identity. In the present study, we performed the first analysis of epigenetic mechanisms (DNA methylation and histone marks) involved in the regulation of the human SOX3 gene expression during RA-induced neural differentiation of NT2/D1 ...

متن کامل

Sequentially acting Sox transcription factors in neural lineage development.

Pluripotent embryonic stem (ES) cells can generate all cell types, but how cell lineages are initially specified and maintained during development remains largely unknown. Different classes of Sox transcription factors are expressed during neurogenesis and have been assigned important roles from early lineage specification to neuronal differentiation. Here we characterize the genome-wide bindin...

متن کامل

Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones.

Neural precursors persist throughout life in the rodent forebrain subventricular zone (SVZ) and hippocampal dentate gyrus. The regulation of persistent neural stem cells is poorly understood, in part because of the lack of neural progenitor markers. The Sox B1 subfamily of HMG-box transcription factors (Sox1-3) is expressed by precursors in the embryonic nervous system, where these factors main...

متن کامل

SOX2 Functions to Maintain Neural Progenitor Identity

Neural progenitors of the vertebrate CNS are defined by generic cellular characteristics, including their pseudoepithelial morphology and their ability to divide and differentiate. SOXB1 transcription factors, including the three closely related genes Sox1, Sox2, and Sox3, universally mark neural progenitor and stem cells throughout the vertebrate CNS. We show here that constitutive expression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2014